Feller property of the multiplicative coalescent with linear deletion
نویسندگان
چکیده
منابع مشابه
Feller property of the multiplicative coalescent with linear deletion
We modify the definition of Aldous’ multiplicative coalescent process [3] and introduce the multiplicative coalescent with linear deletion (MCLD). A state of this process is a square-summable decreasing sequence of cluster sizes. Pairs of clusters merge with a rate equal to the product of their sizes and clusters are deleted with a rate linearly proportional to their size. We prove that the MCL...
متن کاملThe Entrance Boundary of the Multiplicative Coalescent
The multiplicative coalescent X(t) is a l-valued Markov process representing coalescence of clusters of mass, where each pair of clusters merges at rate proportional to product of masses. From random graph asymptotics it is known (Aldous (1997)) that there exists a standard version of this process starting with infinitesimally small clusters at time −∞. In this paper, stochastic calculus techni...
متن کاملChung-Feller Property of Schröder Objects
Large Schröder paths, sparse noncrossing partitions, partial horizontal strips, and 132-avoiding alternating sign matrices are objects enumerated by Schröder numbers. In this paper we give formula for the number of Schröder objects with given type and number of connected components. The proofs are bijective using ChungFeller style. A bijective proof for the number of Schröder objects with given...
متن کاملAggregation models with limited choice and the multiplicative coalescent
The percolation phase transition and the mechanism of the emergence of the giant component through the critical scaling window for random graph models, has been a topic of great interest in many different communities ranging from statistical physics, combinatorics, computer science, social networks and probability theory. The last few years have witnessed an explosion of models which couple ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2019
ISSN: 1350-7265
DOI: 10.3150/17-bej984